
SSCCII 2004 Conference. ARC (Computer Architecture) paper.

1

Teradactyl: an Easy-to-Use Supercomputer
Augustus K. Uht

1

Abstract— Since Ada Lovelace, using supercomputers has
been much harder than building them. Compilers can only
occasionally automatically parallelize interesting programs.
Researchers spend years developing efficient code. We
propose to turn the supercomputing norm on its head: we
won't use software to adapt to hardware idiosyncrasies,
instead we'll make software easy with sophisticated hands-off
supercomputers. We want to let scientists concentrate on
science, instead of scheduling loop iterations on parallel
hardware. In this paper we propose an alternative: using our
Teradactyl supercomputer architecture, based on our
successful Levo processor (see http://www.jilp.org , Volume 5,
August). We describe and analyze Teradactyl within.

Index Terms— Supercomputing, hardware, resource-flow,
computer architecture.

I. INTRODUCTION
UPERCOMPUTER programming is more torture than an
art or a science. Since Ada Lovelace, using

supercomputers has been much harder than building them.
The basic problem addressed herein is that

supercomputer users may need months to years of
programming effort to port or create their unique research
applications to the latest supercomputer, greatly wasting
their valuable time and decreasing the world’s overall
research productivity. This situation arises because of the
arcaneness of all of the supercomputing programming
methods used to date. These methods don’t make it easy for
the scientist programmer, they make it harder and force
him/her to spend much time learning the nuances of
computer science and computer architecture, instead of
spending the time on her/his own research area. This
situation is a real waste of talent, and constrains the amount
of research progress in non-computer areas.

This problem is exacerbated by the frequent introduction
of new computer architectures and programming models.
Once an application has been ported to one machine, that
machine is obsolete and another porting must take place.

As implied above, the current solutions to the
programming problem are really not solutions, they merely
pass the buck to the user. For example, many software
libraries are available for the application programmer to
use. But which library/architecture combination is best for a

This work was supported in part by the U.S. National Science

Foundation under Grant No. MIP-9708183. Patents applied for.
Augustus K. Uht is with the University of Rhode Island,

Microarchitecture Research Institute, Department of Electrical and
Computer Engineering, 4 East Alumni Ave., Kingston, RI 02881 USA
(telephone: +1-401-874-5431, e-mail: mailto:uht@ele.uri.edu).

particular application? The application programmer needs
to spend a lot of time to figure this out. And this is what we
want to avoid: wasting the non-computer researcher’s time.

The essence of our solution is to give the ‘buck’ to the
computer hardware. We propose to solve the programming
problems with a more robust computer architecture, one
that solves the major problem of data dependency detection
and minimization. Further, the proposed Teradactyl
machine presents the classic simple sequential
programming model to the application programmer, so, for
example, the programmer need not try to parallelize his/her
code, nor worry about scheduling calculations on the target
machine, necessary today.

A. Further Motivation
In modern times, the CDC 6600 [28] and the IBM

360/91 [1] could be said to have started the modern era of
supercomputing. With the addition of vector units (the
Cray-1) or SIMD operation [4] compiler writers went wild
trying to automatically parallelize high-level programs [15],
with some success [21]. While there may have been some
initial hope of parallelizing general purpose programs with
complex control flow [3, 8], this was quickly dropped in
favor of scientific programs with simpler control flow and,
hopefully, “embarrassing” parallelism. As science and
engineering of all kinds quickly progressed, it became
apparent that the relevant computations required were not
all that straightforward. While the control flow in such
programs may be simple, the data flow can be extremely
complex, especially when trying to map scheduling and
communications onto a real parallel machine.

Having been out of the supercomputing field since about
1988 [32], I looked at the 2002 SC (formerly
“Supercomputing Conference”) proceedings to see what
had happened in the ensuing 15 years. As far as I can tell,
little has changed (by-the-bye, this has also been mainly
true in my own main field of computer architecture); in
fact, things have gotten worse. We are building bigger
machines without having figured out how to program the
prior ones. The useful lifetime of a supercomputer seems to
be about two years, if that, after many hard years of design
and construction; this is not enough time for scientists to
figure out how to use the machines well; and then it all
changes again. The applications are getting more
demanding and more areas of science and engineering need
supercomputing to make progress. (Indeed, the safety of the
U.S. nuclear stockpile depends on progress in
supercomputing.)

We propose to turn the supercomputing norm on its

S

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

2

head: we won’t use software to adapt to hardware
idiosyncrasies, instead we’ll make software easy with
sophisticated hands-off supercomputers. In other words,
our goal is to enable the use of simple sequential
programming of supercomputers, letting the hardware do
the hard stuff. We want to let scientists concentrate on
science, instead of scheduling loop iterations on parallel
hardware.

A legitimate question to ask at this point is: won’t we
wind up with grossly inefficient hardware, or extremely
slow programs? Maybe so, maybe not. While it is our
responsibility to avoid both of these situations, certainly
one can go too far in the other direction. To illustrate our
claims, we argue that the best metric for supercomputer
performance on a given application is not flops, not wall
clock time, but rather: total time-to-solution. This is defined
as the wall clock execution time of all runs necessary for a
program, including test runs, PLUS the time spent by the
user to program the supercomputer. The latter is non-trivial,
including software mapping, porting, tuning, education
(learning hardware and software library architectures), and
thus possibly taking years, as we will see. We aim to reduce
it greatly, possibly at the expense of some inefficiency or a
few flops, but maybe not even those will be necessary.

Our plan is to leverage our recent successful work in
high-performance uniprocessor microarchitecture [35] to
design a supercomputer that self-schedules, maps, and
honors dependencies with no help from the user, not even
the compiler writer. A resource-flow model of computation
will be employed, allowing rampant speculation of code
while ensuring correct program execution by time-tagging
instructions and data.

The remainder of this paper is organized as follows.
Other background material is presented in Section II. In
Section III the resource-flow uniprocessor called Levo is
described to introduce the basic concepts. Teradactyl’s
architecture is presented in Section IV and its performance
analyzed in Section V. We conclude in Section VI.

II. MORE BACKGROUND

A. State of the Torture – Current Status of
Supercomputing Issues

In [6] the experiences of Boeing, Intel and HP of porting
the BCSLIB-EXT code from legacy code to Itanium 2
processors are related. It seems that just moving from one
supercomputer architecture to another architecture is a
major undertaking, even going to a machine designed for
ease of parallelism extraction (by the compiler).

Programming clusters of commodity processors can be
daunting [22], as can programming any supercomputer.
Compounding the problem is the difficulty in predicting
and modeling performance [17].

An excellent paper describing the programming of a new
computational chemistry application is [5]. From this
paper’s Discussion section we quote the following

statement, illustrating our thesis concisely:
“Currently, the manual development and
testing of a reasonably efficient parallel

code for a computational model …
typically takes months to years for a

computational chemist.”
(The italics are ours.)

The authors describe efforts to build a system to reduce
the time to a day or less, but this is only for one application
area; of course, there are many more. Other automatic
tuning systems include ATLAS [38]. Even tuning
applications for uniprocessors can be difficult [37].

Even with much effort, good performance can be hard to
achieve. For example, in [11] going from 1 to 128
processors on an IBM SP only gives performance gains of
about 2x to 10x on seven applications. A lot of the effort
goes into representing dependencies for efficient mapping
and scheduling; we seek to completely avoid this.

Many libraries of system routines and other aids have
been devised with great effort to ease the programmer’s
task. One of the best known is the Message Passing
Interface (MPI) [12, 25]. But programming with such aids
is still quite difficult [30].

Compiler construction has a hard time keeping up with
“rapidly shifting architectures” [20]. The use of directives
in program construction and compiler aids is limited, in this
case for loop parallelization [9].

B. Thus: Still Need Easier Programming
Think of the sphere of influence of supercomputing if

anyone could use it, especially researchers from other
fields; biologists could concentrate on biology, chemists on
chemistry, etc. Think of the advances computer scientists
and engineers could make if their efforts could be focused
other than on machine and application scheduling, mapping
and tuning. There is potential here to make a large impact.

III. INTRODUCTION TO RESOURCE-FLOW COMPUTING -
LEVO: A RESOURCE-FLOW UNIPROCESSOR

A. New Hardware Execution Model - Resource-Flow
Resource-flow computing [19, 31, 34, 35] defines a

machine where shared resources are allocated to the
temporally earliest, ready to execute, instructions,
regardless of the presence or absence of correct input
operands; thus, rampant speculation occurs. Levo is a
realization of resource-flow computing, having active
stations, time tags and distributed resources, but without
centralized resources such as a register file or reorder
buffer. Data dependencies are minimized and any necessary
ordering is maintained with very simple hardware. Levo
also employs fixed-length segmented forwarding busses
that help to ensure scalability of the microarchitecture over
a wide range of machine configurations or geometries. So
far disjoint eager execution [36] and hardware-based full
predication [35] have also been used to increase the number

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

3

of executable instructions. These techniques expose a
significant amount of instruction level parallelism and
obtain high Instructions Per Cycle (IPC) ratings without
increasing clock cycle time. Currently simulations of Levo
executing 10 standard general-purpose (not scientific)
benchmark programs from the SPECint95 and
SPECint2000 suites show that Levo realizes IPC’s greater
than 6, on average, with realistic assumptions, and without
an increase in the cycle time. Our studies also indicate that
with certain architectural improvements, Levo may obtain
IPC's greater than 10[14, 35].

B. Uniprocessor High ILP/IPC Realization – Levo
1) Overview

Levo consists of distributed and scalable hardware. A
high-level logical block diagram of Levo is shown in
Figure 1. The major novel part of Levo is the n X m
instruction Execution Window (E-window).

Levo operates as follows. Instructions are fetched from
the L1 I-Cache into the Instruction Window and assembled
into a block one E-window column high (n instructions).
When the first column (0) in the E-window commits, the
entire E-window contents are logically shifted left and the
new instruction block is shifted into the last E-window
column (m-1). Column 0 commits when all of its
instructions have finished executing: the memory store
results in Column 0 are sent to the L1 D-Cache, and the
Instruction Set Architecture (ISA) register results are sent
to later columns. Processing resources are located
uniformly throughout the E-window. All instructions in the
E-window, including memory operations, are eligible for
execution at any time. Store results, as well as register
operation and branch operation results (predicates), are
broadcast forward (to the right) in the E-window and
snarfed by instructions with matching operand addresses.
Load requests are satisfied either from earlier in the E-
window or directly from the L1 D-Cache.

C
o
l
u
m
n

0

C
o
l
u
m
n

1

C
o
l
u
m
n

2

C
o
l
u
m
n

m-1

L1

D-
C
a
c
h
e

L1

I-
C
a
c
h
e

Commit
(memory stores)

Temporally
Earliest

Instruction

Temporally
Latest

Instruction

AS

Active
Station
(holds 1
Instruc-

tion)
[0, 2]

n m X Execution
Window

I-
F
e
t
c
h

Instruction
Window

(Unified L2 Cache
and Main Memory

not shown.)

Processing Elements (PEs) are distributed among AS’s.

(memory
loads)

Figure 1. Levo high-level logical block diagram. The Execution Window
is the key element.

from prior columnfrom prior columnfrom prior column

to next columnto next columnto next column

Column 1i- Column 1i+Column i

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

SG

SG

SG

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

SG

SG

SG

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

SG

SG

SG

Figure 2. Generic Levo E-window details. A segmented (spanning) bus’s
length does not change as columns are added to the machine. (Physically,
the last column connects to the first column, forming a loop of columns. In
a typical floorplan the loop is constructed so that the delay across all bus
segments is the same and the delay from column to column is nil.) In this
example the spanning bus length is 3 SG’s. Each RFU also snoops the
other buses at its level in the same column (not shown), to maintain RFU
consistency for its SG.

There are two key novel features of the E-window that
make it scale and ensure that each operand (eventually) gets
the right result as its input. First, the broadcast bus is
divided into segments, each one typically a column long.
The bottom, or end, of one segment is coupled to the top of
the next segment via storage elements having a small delay.
Thus, additional columns can be added to the E-window
without impacting Levo’s cycle time.

The second novel feature is Levo’s use of time tags.
Each instruction in the E-window has a unique time tag
corresponding to its position in the E-window. The time
tags provide the proper result-operand linkage with scalable
hardware, since all comparisons are made simultaneously
with an amount of hardware linearly proportional to the
machine size. The time tags are used for all dependency
checking and all data: memory, register and predicate.

In detail, the E-window holds nm Active Stations (AS).
An Active Station is a more intelligent form of Tomasulo’s
reservation station [29]. Each AS holds one instruction.
Small numbers of physically close AS’s form Sharing
Groups (SG); see Figure 2. Processing Elements (PE) are
assigned to each sharing group, typically one PE per SG.
Each AS in the E-window has a corresponding integer time
tag indicating its instruction’s nominal temporal execution
order. Time tags are formed by the concatenation of the
AS’s E-window column number and row number. Every
time column 0 commits, the column part of all of the time
tags in the machine is decremented by one; hence, time tags
are easily recycled and never need to be more than several
bits long.

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

4

Levo’s microarchitecture is alterable to match any ISA.
So far we have fully realized one GP ISA, the MIPS-1, in
our simulator and obtained high performance. No compiler
modifications are necessary for Levo. Therefore both
legacy and standard sequential code can be executed.
2) Basic Levo Time Tag and Active Station Operation

Levo uses novel time-tagged active stations to realize
rampant speculative execution of code. No explicit
renaming registers or reorder buffer are used.

In Levo the time tags are constructed and used in novel
ways: to both enforce programmatic execution (no Program
Counter is used) and minimize dependencies; e.g., this is
used to eliminate WAR (Write After Read) dependencies in
both register and memory accesses.

The basic operation of time-tagged instructions is shown
in Figure 3. Time-tagging assumes the broadcast of
instruction result information on a single logical bus in one
direction, snooped by all later active stations. The basic
conditions necessary for an active station to snarf or read
the contents of the bus and allow the active station’s
instruction to fire are:

1. The broadcast time tag on the bus must be less
than the time tag of the active station.

2. The broadcast time tag must be greater than or
equal to the time tag of the snarf register (last
snarfed time tag: LSTT).

3. The value of the broadcast datum must be
different from the value of the existing
operand in the active station (if any).

If these conditions are met, the following happens:
1. The broadcast time tag is copied into LSTT.
2. The datum is copied into the active station’s

corresponding operand’s value register.
3. The active station’s instruction is sent to its

corresponding PE with its operands for
execution.

Once the instruction is executed:
1. The execution result is broadcast on the bus,

contention permitting, with its register address
and the active station’s time tag.

2. The active station disables itself for further
execution until another datum is snarfed.

3. The entire process repeats.
Thus, only the closest result (with an earlier time tag

value) present on the forwarding bus is used as the final
input operand value for an instruction; this both enforces
correct program execution and minimizes data
dependencies. The inefficiency of Case 1 in the figure, I9
firing twice, does not substantially adversely affect
performance.

Since each time tag corresponds to exactly one
instruction, and hence exactly one Active Station, time-
tagging has linear cost growth, O(k), with the number of
instructions held in the execution window. Therefore, it is
scalable. Further, its execution algorithm is simple.

• LSTT (Last-Snarfed Time Tag) key for opnd. linking

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus
(spanning bus)

(Snoop: look at bus
Snarf: read off of bus)

Time-Tag Example:

• R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1: I 1 brdcsts. R4 address matches,
TT(I 1) >= LSTT(I 9),
I 1 info snarfed: R3=1

Time – 2: I 5 brdcsts. R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Case 1:

Time – 1: I 5 brdcsts. R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Time – 2: I 1 brdcsts. R4 address matches,
TT(I 1) <

not
LSTT(I 9),

I 1 info snarfed.

Case 2:

Figure 3 Active Station logic and Time Tag example. In the example, in
Case 1, I1 executes before I5, while in Case 2, I1 executes after I5. In both
cases I9 ends up with the correct datum, ‘2.’

With memory operands, the memory address is used in

place of the register address.
Time tags are used in common processors to squash

instruction results occurring after a mispredicted branch, as
well as to maintain instruction order in general. A
timestamping method was originally proposed for
microarchitectures in the Warp Engine [7], which in turn
was based on a novel simulation technique [13]. In the
latter, a strict ordering of timestamps is maintained at
receiving processes (in our case, instructions); Levo does
not require this. The Warp Engine relied on the use of
either floating point numbers or very large integers for the
time tags, only tagged memory references, required the use
of bandwidth-consuming “anti-messages” for mis-
speculation rollback, and used the tags only for control-
flow ordering.

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

5

3) Segmented Result Buses Scalable Microarchitecture
In Levo, segmented or spanning buses are used to

propagate active station results to later active stations. This
avoids a performance penalty because an instruction’s
result is likely to be used soon after it has been created [2,
10, 18, 26]. Adjacent segments are connected via Register
Forwarding Units (RFU), which introduce a small delay,
usually one cycle, from segment to segment; see Figure 2.
The idea is that the later in the E-window a result is used,
the more likely it is to be used later in time, and the delays
introduced by the RFU’s will be hidden. Segment length is
independent of column height. Since the length of segments
need not change with the size of the machine, the spanning
buses help make Levo scalable.

RFU’s hold versions of the ISA register state. Time tags
are forwarded along with their corresponding register
values by the RFU’s onto later bus segments. RFU’s also
provide a filtering function: multiple writes to the same ISA
register in an RFU are combined, keeping the later time tag
and value, and only one result value for that register is
forwarded.

There is one RFU per sharing group and nominally one
spanning bus per RFU. There are also Memory Forwarding
Units (MFU), Predicate Forwarding Units (PFU), and
spanning buses (not shown) for each of the corresponding
data. The number of ports to/from RFUs, MFUs and PFUs
are small and are constant with respect to the size of the
machine; this also helps ensure scalability.

Other novel features are: the elimination of a centralized
register file, and the simplification of state commitment,
both by using RFUs. To see this, assume in Figure 2 that
column i-1 is column 0, where instructions are committed.
By the time an RFU’s state reaches column 0, it contains
the equivalent of what would normally be thought of as the
ISA register state. Since the register values have already
been broadcast to RFU’s in later columns, and since a new
column’s (m-1) RFU’s are initialized with the contents of
the prior column’s RFU’s, there is always at least one RFU
in the E-window that holds the equivalent of the ISA state,
no matter the time difference between writing and reading
an architectural register; therefore it is unnecessary to save
the ISA register state in a separate register file. The same is
true of the predicate state. The memory values, however,
must be written to the L1 D-cache, since an MFU cannot
hold all possible memory locations.

Sometimes instructions must request operands from
earlier in the E-window. This is done via backwarding
buses (not shown), following the same paths as the
forwarding buses, just going in the opposite direction. An
example of this is a Load instruction that has computed its
memory address and is ready for execution, but has not yet
snarfed a corresponding memory datum. The Load sends its
request backwards in the E-window, along a backwarding
bus; the request contains the memory address of the
requested datum. A Store with a matching address will
snarf and stop the backwarding request, and broadcast its

Store value on a forwarding bus, in the usual way. The
Load will then snarf the datum. Should there be no
matching Store, the request is satisfied from the memory
hierarchy; the latter is accessed simultaneously with the E-
window search, just in case there is no matching store
earlier in the E-window.

C. Initial Levo Experimental Results
We have performed extensive cycle-accurate simulations

on the Levo model [18, 19, 31, 35]. Briefly, 10 benchmarks
from the SPECint95 and SPECint2000 suites were
compiled into MIPS-1 code and executed on the simulator.
These benchmarks are general purpose and typically have
complex control flow, e.g., gcc; they are notoriously hard to
execute well. While the IPC realized for a reasonable
configuration and a main memory latency of 100 cycles is
only about 5 IPC, we have discovered that if instruction
fetch is improved the harmonic mean IPC goes up to 7-to-
17, depending on the configuration. We are currently both
addressing this issue as well as implementing other IPC
enhancing techniques.

We have also found that main memory latency is
tolerated well. Increasing the latency from 25 to 800 cycles
reduces the performance by only 6%.

Thus, the resource flow model works well on really
tough code. Usually the SPECfp codes execute much better
on high-IPC machines than the SPECint’s do. Since the
SPECfp codes are much more similar (if not the same) as
those executed on supercomputers, the implication is that a
supercomputer using the resource flow model might
execute its applications extremely well and with little if any
additional programming effort.

D. Why Levo is Relevant to Supercomputing
The key problem with current supercomputing is the

detection and minimization of data dependencies. Levo
handles data dependencies routinely with scalable hardware
and little effort. Resource-flow execution takes advantage
of rampant speculation, which can be used as a tool to
effectively schedule and map computation on
supercomputers automatically, with no programmer
involvement. Time tags make all of this possible. It is very
easy to add resources with the Levo model; this is also true
in our proposed supercomputer. Programming is made
simple, once again.

IV. TERADACTYL – RESOURCE-FLOW SUPERCOMPUTER

A. Architecture and Overall Operation
A block diagram of the overall Teradactyl logical

architecture is shown in Figure 4, for a 16-processor
implementation. It is intended that Teradactyl scale to 100’s
of 1,000’s of processors. The simple logical “wagon-
wheel” structure shown is realized in physical hardware
with a more linear and scalable construction; more on this
in Section 4).

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

6

latest
Processor/

Memory Unit
(PMU)
(#14)

idle
PMU earliest

PMU
(#0)

load datum
return

load requests

store forwarding;
program forwarding

instructions;
load data

committed
store data

Γ1 Memory

Figure 4. Teradactyl block diagram (logical). Paths to or from Γ1(Gamma1) memory and PMU’s are called “gamma rays.” Gamma rays for ‘committed store
data’ and ‘instructions’ are shown only for the earliest PMU (#0); such physical connections are also needed for the other PMU’s, but only those for PMU #0 are
active at any given time. Gamma rays for ‘load datum return’ and ‘load request’ are active for all PMU’s all the time. All gamma ray bandwidth requirements are
small.

Roughly speaking, a complete Teradactyl corresponds to

a complete Levo machine. In particular, a Teradactyl PMU
(Processor/Memory Unit) corresponds to a Levo column.
Internally, a PMU is similar in construction to a Levo
machine. Hence, Teradactyl is essentially a macro-Levo
constructed of smaller micro-Levo’s.
1) Basic Structural Description

The central part of Teradactyl is the Γ (gamma) 1
memory, so called because it is above the main memory
(Γ0) in the memory hierarchy (gamma=upside-down ‘L’; a
regular ‘L’ is used below the main memory). Γ1 holds not
only the coherent data memory of the entire computer, be it
semiconductor, disk, tape or a combination of them, but
also the program or instruction memory, and the overall
control unit of Teradactyl.

All of the application’s execution occurs in the ring of
Processor/Memory Units (PMU’s) around Γ1. Each PMU
executes a large part of the overall computation, much more
than is held in each PMU’s (~Levo) E-window. The PMU’s
and the Γ1 memory communicate via “gamma rays,” or
spokes of the wheel. The load-request and return gamma
rays to and from every PMU are relatively low-bandwidth
connections.

In the desired plan, there will be physical gamma rays for
instructions and committed store data for all of the PMU’s,
but only one PMU’s such gamma rays will be active at any
given time, and usually for a relatively long time (micro- or
milli-seconds). Thus, the actual bandwidth required at any

given time to and from Γ1 should be relatively small.
Teradactyl’s size is easily increased by inserting more

PMU’s in the loop.
2) General Operation

Initially, none of the PMU's contain any data or
instructions or are doing any computation. To start the
execution of an application, G1 sends instructions (the
application machine code itself, a standard non-parallelized
imperative program) to an arbitrary PMU, which is then
labeled with time tag (TT) #0. Thus, the ring of PMU's
corresponds to Levo's E-window, and an individual PMU
corresponds to an E-window column. The overall time tag
of an instruction is thus its PMU number concatenated with
its E-window time tag.

PMU #0 allocates for itself an estimated useful amount
of work (a ‘chunk’), then passes on future computation
(instructions) to the next PMU (#1), PMU #1 gets its
estimated share and passes the buck to PMU #2, and so on
counter-clockwise around Γ1; see Figure 4. PMU’s
continue to be added to the computation until PMU #0 is
reached from the other side; the hardware is then fully
allocated.

All of the PMU’s execute their own share of the
computation simultaneously. Resource-Flow rampant
speculative execution is used. Thus, for example, PMU #4
could be computing at the same time as PMU #1, even
though by the nominal sequential order PMU #1’s
computation should all be performed first.

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

7

What makes sure we get the right answer? Similarly to
Levo, stores are effectively forwarded from PMU to later
PMU and so on counterclockwise around the ring. The
forwarding is adjusted so that the net bandwidth is linearly
proportional to the number of PMU’s. Any PMU receiving
a store with an address matching a valid datum in its Γ0
memory may have to redo part or all of its computation,
since an input may have changed. Since most scientific
computation is data independent, we believe this will be a
rare circumstance, and instead Teradactyl will realize close
to the full parallelism inherent in the application.

As a simple example, consider the addition of two
matrices of vast sizes. The code goes to PMU #0, it takes,
say, a million or a billion elements for itself, then PMU #1
takes the next million elements, and so on. As soon as a
PMU has its code loaded, it begins execution. It will start to
generate load requests, which are sent back to Γ1 via the
backwarding ring going clockwise in Teradactyl or via the
PMU’s own gamma rays. As Γ1 receives the data requests,
it satisfies them by sending the data out to the ring, and
hence the requesting PMU.

For a more complex example, consider another matrix
operation that occurs after the matrix addition of the last
paragraph. Assume the original matrices used as the inputs
to the addition are sparse (their elements are mainly equal
to 0).

In the Teradactyl model, the second matrix operation will
commence independently of the first operation, possibly
even before it, even the second operation’s code is later in
the Teradactyl ring; this is due to the rampant speculation
of the Teradactyl model. The second operation will use
whatever it predicts are the values of the results of the first
operation; since the first operation’s output matrix is sparse,
most of the time the second operation will use the correct
values for its inputs, that is, it will have correctly predicted
the values of its inputs.

Now, let’s say the first operation produces an element of
its result matrix that is non-0. Like the other results, this
value is forwarded around the Teradactyl ring with its
address. If a sub-operation in the second matrix operation
has a matching address, and its predicted input value differs
from the broadcast actual value (unlike in the previous 0
broadcasts), the sub-operation will recompute its result,
which in turn will be broadcast around the ring, updating
later speculative computations as needed, and so on.

Therefore, matrix operations are executed in parallel,
with data dependent operations eventually sequentialized as
necessary, and only when necessary.

The communication around the ring will be very fast
(nanoseconds from PMU to adjacent PMU), especially as
compared to the execution time of each chunk in a PMU. In
essence the entire computation is pipelined around the ring.

When PMU #0 finishes executing its chunk, it sends its
computed data to Γ1 for permanent storage. PMU #0 is
then freed, and may be reallocated to the other end of the
ring. Also, all of the remaining allocated PMU’s must

decrement their PMU time tag values, in order to recycle
them.

Therefore the ring holds a rotating window of
computation, advancing counter-clockwise as the
computation progresses.
3) Related Work

Clearly the big picture of Teradactyl bears resemblance
to architectures past. The Denelcor HEP [23] had a rotating
window of threads’ state, each thread being executed a part
at a time (until it blocked, say on a memory reference).
However, there was effectively only one processor, so
while efficiency was high, realized performance was less
so.

Perhaps the closest machine to Teradactyl is the systolic
array class of machines, originally formulated by Kung and
Leiserson [16]. There are a number of differences between
the two machines. First, in Teradactyl output data (results)
do not flow through the array to their final destination
(memory), rather the results stay with the processor where
they were computed, and are saved directly from there.
Secondly, and perhaps most importantly, systolic arrays
were heavily tied to the scheduling and mapping
capabilities of their compiler, exactly what we are trying to
avoid. Thirdly, the overall structure of a systolic array
could be one dimensional, two dimensional, or something
else, but always trying to match the targeted computations.
Teradactyl targets all scientific large-scale computations,
regardless of problem, program or data structure, and
without the compiler’s assistance.

There is also a resemblance to counterflow processors
[27], but the latter were asynchronous machines aimed at
the microprocessor/single-chip level, with instructions
going in one direction and interacting with data going in the
opposite direction. Teradactyl is dissimilar on all accounts.

The Decoupled Access/Execute computer [24] is another
type of machine separating flows of data or instructions. It
was also targeted for uniprocessor construction, nor did it
make use of time-tagging, to our knowledge.
4) Physical Realities and Possible Solutions

As shown in Figure 4, a logical Teradactyl does not
scale: the total volume is proportional to the radius squared.
However, there are numerous possible physical solutions,
especially given the linear/ring nature of the machine.

First, it is possible that many PMU’s would fit on a
single chip, or at least many CPU’s. This would
immediately but not dramatically increase the density of the
machine.

More likely would be a folding of the ring, again around
a common core, like a cylindrical accordion. The ring could
also be “wound” around the common core on a cylinder,
spiraling up the outside of the cylinder then connecting to
the inner PMU’s, spiraling down the inside of the cylinder
and then reconnecting to the first PMU at the bottom. There
are many physical topologies that would support the scaling
of Teradactyl.

The reliability and fault-tolerance of 1,000 processor

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

8

machines must always be considered. Teradactyl makes
fault-recovery relatively easily. When a PMU fails, it is
taken out of the wheel, and the resulting free ends of the
wheel are logically connected together. In the worst case,
all computation after the faulty PMU is squashed, and is
repeated with the working PMU right after the faulty PMU
taking the faulty PMU’s place and re-executing its code.
The programmer is in no way involved in this process.
Even the system operator need do little, other than record
the location of the faulty PMU for later replacement.

Teradactyl’s memory system architecture must still be
honed to meet the needs of its likely applications. Also, the
code chunking algorithm must be tuned and fleshed out.
We are currently working on these issues.

B. Processor/Memory Unit (PMU) Microarchitecture
While it would be economically desirable to use a

commodity processor such as an Intel or an AMD chip for
the PMU, Teradactyl’s performance would likely suffer.
This is because there is no externally-accessible indication
of an instruction’s sink’s time tag, or the equivalent. Thus,
a datum or other mispeculation would necessitate the
squashing of all later instructions in all later PMU’s in the
ring. This is unacceptable. Therefore we will use a Levo-
based microarchitecture for the PMU.

A complete PMU in Teradactyl is analogous to an E-
window column in Levo. The PMU’s microarchitecture is
similar to Levo’s; limited space precludes its precise
description here.

We are currently developing a Levo prototype. We have
already obtained some of its physical hardware
components. Our experience with this prototype will help
us with the detailed architecture of a PMU. In fact, we may
be able to realize one or more PMU’s with the Levo
prototype, since the prototype will be constructed out of
programmable logic. Therefore, we may be able to realize a
very small version of a Teradactyl in hardware and test its
operation.

We hope to have the Levo prototype constructed and
tested by early 2005. We do not yet know if a chip
realization will be attempted. A lot depends on how
successful the prototype is, and if it is picked up by
industry.

V. TERADACTYL ANALYSIS – ACHIEVING PETA-OPS
We are interested in two estimates: how many processors

are needed to execute both a sustained Tera-op, as well as a
sustained Peta-op? (Note: we are not interested in peak
performance, but rather the sustained performance which is
exhibited during actual code execution.) Further, can these
machines be built?

We will take a Levo PMU as a starting point, using
existing simulation results and hardware estimates [14, 35].
We assume Levo will operate at 5 GHz, a conservative
estimate for a high-end processor a few years from now.
We further assume that Levo will realize 10 IPC on average

on scientific codes, a reasonable if not conservative
estimate. (This may actually be achievable today. We have
not simulated the SPECfp codes, which should do better
than the SPECint codes; the latter give IPC’s of about 6,
today.) Note that this all includes high-latency memory
accesses and other realistic assumptions.

Therefore each PMU will yield a sustained 50 Giga-ops
of performance. 20 PMU’s arranged in a Teradactyl wheel
will thus give a sustained Tera-op. Let us assume that not
all PMU’s will be efficiently utilized, and call it 25 PMU’s
for a Tera-op. Then a Peta-op will take 25,000 PMU’s, and
dissipate around 1-2 Megawatts. The latter is exhibited by
today’s supercomputers, and it may decrease as a result of
all of the low-power processor research underway today.
We call this size of Teradactyl a Petadactyl.

By way of further comparison, the fastest supercomputer
today, the Japanese Earth Simulator, has a peak
performance of about 35 Tera-ops. Much of this is realized
in sustained program execution of at least some programs.
Other supercomputers have peak performances in the 5-7
Tera-ops range, and have difficulty realizing a Tera-op in
sustained performance on many codes.

While Petadactyl’s 25,000 processors look daunting,
remember that the Teradactyl programming model is
extremely simple; no programmer-based parallelization or
resource allocation is performed. No communications
strategies need be devised. Further, greater advances in IPC
realization are likely before such a machine is built, and
processor clock-rates may be greater [33], leading to a
reduction in the total number of PMU’s needed.

VI. CONCLUSIONS
Teradactyl is a new supercomputer architecture that

greatly reduces the time needed for programmers to make
use of high-end computers. In particular, non-computer
specialists will find it easy to program Teradactyl and
obtain solid performance, without the machinations
currently required of such researchers.

Teradactyl is scalable by design, can easily reach Tera-
ops speeds. Peta-ops performance is readily obtained when
the requisite larger number of processors is used, giving a:
“Petadactyl.” Such a change will require little or no porting
of program code by the end users. If anything, the codes
will be simplified, as compared with the code versions used
on traditional supercomputers.

Clearly, there is much to be done before we can make a
strong experimental case for Teradactyl. The current Levo
simulator, FastLevo, must be adapted for the particular
microarchitecture needed for Teradactyl PMU’s, and a
Teradactyl simulator must be written to verify its high
performance.

In terms of prototypes, the goal is to first build a Levo
processor (its design is underway), then a 25 processor
Teradactyl, then a 25,000 processor Petadactyl.

While the challenges in realizing our goals are great, we
are confident of success. In order to solve hard problems,
especially old ones like automatic extraction of parallelism,

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

9

one must start from a completely different perspective, and
be willing to rethink all of the assumptions that have
hampered success. We are doing this.

REFERENCES
[1] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The IBM
System/360 Model 91: Machine Philosophy and Instruction-Handling,"
IBM Journal of Research and Development, vol. 11, no. 1, pp. 8-24,
January 1967.
[2] T. M. Austin and G. S. Sohi, "Dynamic Dependency Analysis of
Ordinary Programs," in Proceedings of the 19th Annual International
Symposium on Computer Architecture. Gold Coast, Australia: IEEE and
ACM, May 1992, pp. 342-351.
[3] U. Banerjee and D. Gajski, "Fast Execution of Loops With IF
Statements," IEEE Transactions on Computers, vol. C-33, no. 11, pp.
1030-1033, November 1984.
[4] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and
R. A. Stokes, "The ILLIAC IV Computer," IEEE Transactions on
Computers, vol. C-17, pp. 746-757, August 1968.
[5] G. Baumgartner, D. E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata,
C.-C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan, "A
High-Level Approach to Synthesis of High-Performance Codes for
Quantum Chemistry," in Proceedings of SC2002: High Performance
Networking and Computing. Baltimore, Maryland, USA, November 16-22,
2002.
[6] J. T. Betts, J. G. Lewis, and D. K. Wah, "Effect of Tuning Legacy
Applications for Contemporary Processors and Contemporary Memory
Hierarchies: A Sparse Matrix Case Study," in Proceedings of SC2002:
High Performance Networking and Computing. Baltimore, Maryland,
USA, November 16-22, 2002. Masterworks Session, Computer Aided
Engineering II, URL: http://www.sc-conference.org/sc2002/.
[7] J. G. Cleary, M. W. Pearson, and H. Kinawi, "The Architecture of an
Optimistic CPU: The Warp Engine," in Proceedings of the Hawaii
International Conference on Systems Science (HICSS), vol. 1: University
of Hawaii, January 1995, pp. 163-172.
[8] R. G. Cytron, "Doacross: Beyond Vectorization for Multiprocessors
(Extended Abstract)," in Proceedings of the 1986 International Conference
on Parallel Processing, August 1986, pp. 836-844.
[9] S. Dong and G. Karniadakis, "Dual-Level Parallelism for
Deterministic and Stochastic CFD Problems," in Proceedings of SC2002:
High Performance Networking and Computing. Baltimore, Maryland,
USA, November 16-22, 2002.
[10] M. Franklin and G. S. Sohi, "Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain Parallel
Processors," in Proceedings of the Twenty-Fifth International Symposium
on Microarchitecture (MICRO-25): IEEE and ACM, December 1992, pp.
236-245.
[11] L. Grigori and X. S. Li, "A New Scheduling Algorithm For Parallel
Sparse LU Factorization with Static Pivoting," in Proceedings of SC2002:
High Performance Networking and Computing. Baltimore, Maryland,
USA, November 16-22, 2002.
[12] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir, MPI - The Complete Reference, vol. 2, The MPI
Extensions: MIT Press, 1998.
[13] D. Jefferson, "Virtual Time," Transactions on Programming
Languages and Systems, vol. 7, no. 3, pp. 404-425, July 1985.
[14] A. Khalafi, "Exploring Multipath Execution on a Distributed
Microarchitecture," Ph.D. thesis, Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA, USA, 2003.
[15] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, "The Structure of
an Advanced Vectorizer for Pipelined Processors," in Proceedings of the
Fourth International Computer Software and Applications Conference,
October 1980.
[16] H. T. Kung and C. E. Leiserson, "Systolic Arrays (for VLSI)," in
Proceedings of the SIAM Sparse Matrix Symposium, Duff and Stewart,
Ed. Philadelphia, PA, USA: SIAM, 1978, pp. 256-282.
[17] C. Lu and D. A. Reed, "Compact Application Signatures for Parallel
and Distributed Scientific Codes," in Proceedings of SC2002: High
Performance Networking and Computing. Baltimore, Maryland, USA,
November 16-22, 2002.

[18] D. Morano, A. Khalafi, D. R. Kaeli, and A. K. Uht, "Implications of
Register and Memory Temporal Locality for Distributed
Microarchitectures," Dept. of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA, Technical Report, October
2002, URL:
http://www.ece.neu.edu/groups/nucar/publications/intervals.pdf.
[19] D. Morano, A. Khalafi, D. R. Kaeli, and A. K. Uht, "Realizing High
IPC Through a Scalable Memory-Latency Tolerant Multipath
Microarchitecture," in Proceedings of the Workshop On Chip
Multiprocessors: Processor Architecture and Memory Hierarchy Related
Issues (MEDEA2002), at PACT 2002. Charlottesville, Virginia, USA,
September 22, 2002. Also appears in ACM SIGARCH Computer
Architecture Newsletter, March 2003, URL:
http://www.ele.uri.edu/~uht/papers/MEDEA2002final.pdf.
[20] D. Parello, O. Temam, and J.-M. Verdun, "On Increasing
Architecture Awareness in Program Optimizations to Bridge the Gap
between Peak and Sustained Processor Performance -- Matrix-Multiply
Revisited," in Proceedings of SC2002: High Performance Networking and
Computing. Baltimore, Maryland, USA, November 16-22, 2002.
[21] C. D. Polychronopoulos and U. Banerjee, "Processor Allocation for
Horizontal and Vertical Parallelism and Related Speedup Bounds," IEEE
Transactions on Computers, April 1987. Special Issue on Parallel and
Distributed Processing.
[22] C. Seitz, "The Architecture, Programming, and Applications of
Clusters," in Proceedings of SC2002: High Performance Networking and
Computing. Baltimore, Maryland, USA, November 16-22, 2002.
Masterworks Session, Infrastructure III, URL: http://www.sc-
conference.org/sc2002/.
[23] B. J. Smith, "Architecture and Applications of the HEP
Multiprocessor Computer," Society of Photo-optical Instrumentation
Engineers, no. 298, pp. 241-248, 1981.
[24] J. E. Smith, "Decoupled Access/Execute Computer Architectures," in
Proceedings of the 9th Annual Symposium on Computer Architecture:
IEEE and ACM, April 1982, pp. 112-119.
[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI - The Complete Reference, vol. 1, The MPI Core, second ed: MIT
Press, 1998.
[26] G. S. Sohi, S. Breach, and T. N. Vijaykumar, "Multiscalar
Processors," in Proceedings of the 22nd Annual International Symposium
on Computer Architecture: IEEE and ACM, June 1995.
[27] R. F. Sproull, I. E. Sutherland, and C. E. Molnar, "The Counterflow
Pipeline Processor Architecture," IEEE Design & Test of Computers, vol.
11, no. 3, pp. 48-59, 1994.
[28] J. E. Thornton, "Parallel Operation in the Control Data 6600," in
Proceedings of the Fall Joint Computer Conference, 1964, pp. 33-40.
[29] R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units," IBM Journal of Research and Development, vol. 11, no.
1, pp. 25-33, January 1967.
[30] J. L. Traff, "Implementing the MPI Process Topology Mechanism,"
in Proceedings of SC2002: High Performance Networking and Computing.
Baltimore, Maryland, USA, November 16-22, 2002.
[31] A. Uht, A. Khalafi, D. Morano, M. d. Alba, and D. Kaeli, "Realizing
High IPC Using Time-Tagged Resource Flow Computing," in Proceedings
of the Euro-Par 2002 Conference, Springer-Verlag Lecture Notes in
Computer Science. Paderborn, Germany: ACM, IFIP, August 28, 2002, pp.
490-499. URL: http://www.ele.uri.edu/~uht/papers/Euro-Par2002.ps.
[32] A. K. Uht, "Requirements for Optimal Execution of Loops with
Tests," in Proceedings of the International Conference on Supercomputing.
St. Malo, France, July 4-8, 1988, pp. 230-237.
[33] A. K. Uht, "Uniprocessor Performance Enhancement Through
Adaptive Clock Frequency Control," in Proceedings of the SSGRR-2003w
International Conference on Advances in Infrastructure for e-Business, e-
Education, e-Science, e-Medicine, and Mobile Technologies on the
Internet. L'Aquila, Italy: Telecom Italia, January 6-12, 2003. Invited and
refereed paper, URL:
http://www.ele.uri.edu/~uht/papers/SSGRR2003wFnlUht.pdf.
[34] A. K. Uht, A. Khalafi, D. Morano, T. Wenisch, M. de Alba, and D.
Kaeli, "Levo: IPC in the 10's via Resource Flow Computing," IEEE TCCA
Newsletter, Special Issue, December 2001. Presented at PACT 2001 Work-
In-Progress (WIP) Session, September 2001., URL:
http://www.ele.uri.edu/~uht/papers/LevoWIPPACT01.pdf.

SSCCII 2004 Conference. ARC (Computer Architecture) paper.

10

[35] A. K. Uht, D. Morano, A. Khalafi, and D. R. Kaeli, "Levo - A
Scalable Processor With High IPC," The Journal of Instruction-Level
Parallelism, vol. 5, August 2003. URL: http://www.jilp.org/vol5.
[36] A. K. Uht and V. Sindagi, "Disjoint Eager Execution: An Optimal
Form of Speculative Execution," in Proceedings of the 28th International
Symposium on Microarchitecture (MICRO-28). Ann Arbor, MI,
November/December 1995, pp. 313-325. URL:
ftp://ele.uri.edu/pub/uht/micro95.ps.
[37] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B.
Lee, "Performance Optimizations and Bounds for Sparse Matrix-Vector
Multiply," in Proceedings of SC2002: High Performance Networking and
Computing. Baltimore, Maryland, USA, November 16-22, 2002.
[38] R. Whaley and J. Dongarra, "Automatically Tuned Linear Algebra
Software (ATLAS)," in Proceedings of Supercomputing '98, 1998.

