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Abstract— Since Ada Lovelace, using supercomputers has 
been much harder than building them. Compilers can only 
occasionally automatically parallelize interesting programs. 
Researchers spend years developing efficient code. We 
propose to turn the supercomputing norm on its head: we 
won't use software to adapt to hardware idiosyncrasies, 
instead we'll make software easy with sophisticated hands-off 
supercomputers. We want to let scientists concentrate on 
science, instead of scheduling loop iterations on parallel 
hardware. In this paper we propose an alternative: using our 
Teradactyl supercomputer architecture, based on our 
successful Levo processor (see http://www.jilp.org , Volume 5, 
August). We describe and analyze Teradactyl within. 
 

Index Terms— Supercomputing, hardware, resource-flow, 
computer architecture. 

I. INTRODUCTION 
UPERCOMPUTER programming is more torture than an 
art or a science. Since Ada Lovelace, using 

supercomputers has been much harder than building them.  
The basic problem addressed herein is that 

supercomputer users may need months to years of 
programming effort to port or create their unique research 
applications to the latest supercomputer, greatly wasting 
their valuable time and decreasing the world’s overall 
research productivity. This situation arises because of the 
arcaneness of all of the supercomputing programming 
methods used to date. These methods don’t make it easy for 
the scientist programmer, they make it harder and force 
him/her to spend much time learning the nuances of 
computer science and computer architecture, instead of 
spending the time on her/his own research area. This 
situation is a real waste of talent, and constrains the amount 
of research progress in non-computer areas. 

This problem is exacerbated by the frequent introduction 
of new computer architectures and programming models. 
Once an application has been ported to one machine, that 
machine is obsolete and another porting must take place. 

As implied above, the current solutions to the 
programming problem are really not solutions, they merely 
pass the buck to the user. For example, many software 
libraries are available for the application programmer to 
use. But which library/architecture combination is best for a 
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particular application? The application programmer needs 
to spend a lot of time to figure this out. And this is what we 
want to avoid: wasting the non-computer researcher’s time. 

The essence of our solution is to give the ‘buck’ to the 
computer hardware. We propose to solve the programming 
problems with a more robust computer architecture, one 
that solves the major problem of data dependency detection 
and minimization. Further, the proposed Teradactyl 
machine presents the classic simple sequential 
programming model to the application programmer, so, for 
example, the programmer need not try to parallelize his/her 
code, nor worry about scheduling calculations on the target 
machine, necessary today. 

A. Further Motivation 
In modern times, the CDC 6600 [28] and the IBM 

360/91 [1] could be said to have started the modern era of 
supercomputing. With the addition of vector units (the 
Cray-1) or SIMD operation [4] compiler writers went wild 
trying to automatically parallelize high-level programs [15], 
with some success [21]. While there may have been some 
initial hope of parallelizing general purpose programs with 
complex control flow [3, 8], this was quickly dropped in 
favor of scientific programs with simpler control flow and, 
hopefully, “embarrassing” parallelism. As science and 
engineering of all kinds quickly progressed, it became 
apparent that the relevant computations required were not 
all that straightforward. While the control flow in such 
programs may be simple, the data flow can be extremely 
complex, especially when trying to map scheduling and 
communications onto a real parallel machine. 

Having been out of the supercomputing field since about 
1988 [32], I looked at the 2002 SC (formerly 
“Supercomputing Conference”) proceedings to see what 
had happened in the ensuing 15 years. As far as I can tell, 
little has changed (by-the-bye, this has also been mainly 
true in my own main field of computer architecture); in 
fact, things have gotten worse. We are building bigger 
machines without having figured out how to program the 
prior ones. The useful lifetime of a supercomputer seems to 
be about two years, if that, after many hard years of design 
and construction; this is not enough time for scientists to 
figure out how to use the machines well; and then it all 
changes again. The applications are getting more 
demanding and more areas of science and engineering need 
supercomputing to make progress. (Indeed, the safety of the 
U.S. nuclear stockpile depends on progress in 
supercomputing.) 

We propose to turn the supercomputing norm on its 
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head: we won’t use software to adapt to hardware 
idiosyncrasies, instead we’ll make software easy with 
sophisticated hands-off supercomputers. In other words, 
our goal is to enable the use of simple sequential 
programming of supercomputers, letting the hardware do 
the hard stuff. We want to let scientists concentrate on 
science, instead of scheduling loop iterations on parallel 
hardware. 

A legitimate question to ask at this point is: won’t we 
wind up with grossly inefficient hardware, or extremely 
slow programs? Maybe so, maybe not. While it is our 
responsibility to avoid both of these situations, certainly 
one can go too far in the other direction. To illustrate our 
claims, we argue that the best metric for supercomputer 
performance on a given application is not flops, not wall 
clock time, but rather: total time-to-solution. This is defined 
as the wall clock execution time of all runs necessary for a 
program, including test runs, PLUS the time spent by the 
user to program the supercomputer. The latter is non-trivial, 
including software mapping, porting, tuning, education 
(learning hardware and software library architectures), and 
thus possibly taking years, as we will see. We aim to reduce 
it greatly, possibly at the expense of some inefficiency or a 
few flops, but maybe not even those will be necessary. 

Our plan is to leverage our recent successful work in 
high-performance uniprocessor microarchitecture [35] to 
design a supercomputer that self-schedules, maps, and 
honors dependencies with no help from the user, not even 
the compiler writer. A resource-flow model of computation 
will be employed, allowing rampant speculation of code 
while ensuring correct program execution by time-tagging 
instructions and data. 

The remainder of this paper is organized as follows. 
Other background material is presented in Section II. In 
Section III the resource-flow uniprocessor called Levo is 
described to introduce the basic concepts. Teradactyl’s 
architecture is presented in Section IV and its performance 
analyzed in Section V. We conclude in Section VI.  

II. MORE BACKGROUND 

A. State of the Torture – Current Status of 
Supercomputing Issues 

In [6] the experiences of Boeing, Intel and HP of porting 
the BCSLIB-EXT code from legacy code to Itanium 2 
processors are related. It seems that just moving from one 
supercomputer architecture to another architecture is a 
major undertaking, even going to a machine designed for 
ease of parallelism extraction (by the compiler). 

Programming clusters of commodity processors can be 
daunting [22], as can programming any supercomputer. 
Compounding the problem is the difficulty in predicting 
and modeling performance [17]. 

An excellent paper describing the programming of a new 
computational chemistry application is [5]. From this 
paper’s Discussion section we quote the following 

statement, illustrating our thesis concisely: 
“Currently, the manual development and 
testing of a reasonably efficient parallel 

code for a computational model … 
typically takes months to years for a 

computational chemist.” 
(The italics are ours.) 

The authors describe efforts to build a system to reduce 
the time to a day or less, but this is only for one application 
area; of course, there are many more. Other automatic 
tuning systems include ATLAS [38]. Even tuning 
applications for uniprocessors can be difficult [37]. 

Even with much effort, good performance can be hard to 
achieve. For example, in [11] going from 1 to 128 
processors on an IBM SP only gives performance gains of 
about 2x to 10x on seven applications. A lot of the effort 
goes into representing dependencies for efficient mapping 
and scheduling; we seek to completely avoid this. 

Many libraries of system routines and other aids have 
been devised with great effort to ease the programmer’s 
task. One of the best known is the Message Passing 
Interface (MPI) [12, 25]. But programming with such aids 
is still quite difficult [30]. 

Compiler construction has a hard time keeping up with 
“rapidly shifting architectures” [20]. The use of directives 
in program construction and compiler aids is limited, in this 
case for loop parallelization [9]. 

B. Thus: Still Need Easier Programming 
Think of the sphere of influence of supercomputing if 

anyone could use it, especially researchers from other 
fields; biologists could concentrate on biology, chemists on 
chemistry, etc. Think of the advances computer scientists 
and engineers could make if their efforts could be focused 
other than on machine and application scheduling, mapping 
and tuning. There is potential here to make a large impact. 

III. INTRODUCTION TO RESOURCE-FLOW COMPUTING - 
LEVO: A RESOURCE-FLOW UNIPROCESSOR 

A. New Hardware Execution Model - Resource-Flow 
Resource-flow computing [19, 31, 34, 35] defines a 

machine where shared resources are allocated to the 
temporally earliest, ready to execute, instructions, 
regardless of the presence or absence of correct input 
operands; thus, rampant speculation occurs. Levo is a 
realization of resource-flow computing, having active 
stations, time tags and distributed resources, but without 
centralized resources such as a register file or reorder 
buffer. Data dependencies are minimized and any necessary 
ordering is maintained with very simple hardware. Levo 
also employs fixed-length segmented forwarding busses 
that help to ensure scalability of the microarchitecture over 
a wide range of machine configurations or geometries. So 
far disjoint eager execution [36] and hardware-based full 
predication [35] have also been used to increase the number 
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of executable instructions. These techniques expose a 
significant amount of instruction level parallelism and 
obtain high Instructions Per Cycle (IPC) ratings without 
increasing clock cycle time. Currently simulations of Levo 
executing 10 standard general-purpose (not scientific) 
benchmark programs from the SPECint95 and 
SPECint2000 suites show that Levo realizes IPC’s greater 
than 6, on average, with realistic assumptions, and without 
an increase in the cycle time. Our studies also indicate that 
with certain architectural improvements, Levo may obtain 
IPC's greater than 10[14, 35]. 

B. Uniprocessor High ILP/IPC Realization – Levo 
1) Overview 

Levo consists of distributed and scalable hardware. A 
high-level logical block diagram of Levo is shown in 
Figure 1. The major novel part of Levo is the n X m 
instruction Execution Window (E-window).  

Levo operates as follows. Instructions are fetched from 
the L1 I-Cache into the Instruction Window and assembled 
into a block one E-window column high (n instructions). 
When the first column (0) in the E-window commits, the 
entire E-window contents are logically shifted left and the 
new instruction block is shifted into the last E-window 
column (m-1). Column 0 commits when all of its 
instructions have finished executing: the memory store 
results in Column 0 are sent to the L1 D-Cache, and the 
Instruction Set Architecture (ISA) register results are sent 
to later columns. Processing resources are located 
uniformly throughout the E-window. All instructions in the 
E-window, including memory operations, are eligible for 
execution at any time. Store results, as well as register 
operation and branch operation results (predicates), are 
broadcast forward (to the right) in the E-window and 
snarfed by instructions with matching operand addresses. 
Load requests are satisfied either from earlier in the E-
window or directly from the L1 D-Cache.  
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Figure 1.  Levo high-level logical block diagram. The Execution Window 
is the key element. 
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Figure 2.  Generic Levo E-window details.  A segmented (spanning) bus’s 
length does not change as columns are added to the machine. (Physically, 
the last column connects to the first column, forming a loop of columns. In 
a typical floorplan the loop is constructed so that the delay across all bus 
segments is the same and the delay from column to column is nil.) In this 
example the spanning bus length is 3 SG’s. Each RFU also snoops the 
other buses at its level in the same column (not shown), to maintain RFU 
consistency for its SG. 

There are two key novel features of the E-window that 
make it scale and ensure that each operand (eventually) gets 
the right result as its input. First, the broadcast bus is 
divided into segments, each one typically a column long. 
The bottom, or end, of one segment is coupled to the top of 
the next segment via storage elements having a small delay. 
Thus, additional columns can be added to the E-window 
without impacting Levo’s cycle time.  

The second novel feature is Levo’s use of time tags. 
Each instruction in the E-window has a unique time tag 
corresponding to its position in the E-window. The time 
tags provide the proper result-operand linkage with scalable 
hardware, since all comparisons are made simultaneously 
with an amount of hardware linearly proportional to the 
machine size. The time tags are used for all dependency 
checking and all data: memory, register and predicate.  

In detail, the E-window holds nm Active Stations (AS). 
An Active Station is a more intelligent form of Tomasulo’s 
reservation station [29]. Each AS holds one instruction. 
Small numbers of physically close AS’s form Sharing 
Groups (SG); see Figure 2. Processing Elements (PE) are 
assigned to each sharing group, typically one PE per SG. 
Each AS in the E-window has a corresponding integer time 
tag indicating its instruction’s nominal temporal execution 
order. Time tags are formed by the concatenation of the 
AS’s E-window column number and row number. Every 
time column 0 commits, the column part of all of the time 
tags in the machine is decremented by one; hence, time tags 
are easily recycled and never need to be more than several 
bits long. 
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Levo’s microarchitecture is alterable to match any ISA. 
So far we have fully realized one GP ISA, the MIPS-1, in 
our simulator and obtained high performance. No compiler 
modifications are necessary for Levo. Therefore both 
legacy and standard sequential code can be executed.  
2) Basic Levo Time Tag and Active Station Operation 

Levo uses novel time-tagged active stations to realize 
rampant speculative execution of code. No explicit 
renaming registers or reorder buffer are used.  

In Levo the time tags are constructed and used in novel 
ways: to both enforce programmatic execution (no Program 
Counter is used) and minimize dependencies; e.g., this is 
used to eliminate WAR (Write After Read) dependencies in 
both register and memory accesses.  

The basic operation of time-tagged instructions is shown 
in Figure 3. Time-tagging assumes the broadcast of 
instruction result information on a single logical bus in one 
direction, snooped by all later active stations. The basic 
conditions necessary for an active station to snarf or read 
the contents of the bus and allow the active station’s 
instruction to fire are: 

1. The broadcast time tag on the bus must be less 
than the time tag of the active station. 

2. The broadcast time tag must be greater than or 
equal to the time tag of the snarf register (last 
snarfed time tag: LSTT). 

3. The value of the broadcast datum must be 
different from the value of the existing 
operand in the active station (if any). 

If these conditions are met, the following happens: 
1. The broadcast time tag is copied into LSTT. 
2. The datum is copied into the active station’s 

corresponding operand’s value register. 
3. The active station’s instruction is sent to its 

corresponding PE with its operands for 
execution. 

Once the instruction is executed: 
1. The execution result is broadcast on the bus, 

contention permitting, with its register address 
and the active station’s time tag. 

2. The active station disables itself for further 
execution until another datum is snarfed. 

3. The entire process repeats. 
Thus, only the closest result (with an earlier time tag 

value) present on the forwarding bus is used as the final 
input operand value for an instruction; this both enforces 
correct program execution and minimizes data 
dependencies. The inefficiency of Case 1 in the figure, I9 
firing twice, does not substantially adversely affect 
performance.  

Since each time tag corresponds to exactly one 
instruction, and hence exactly one Active Station, time-
tagging has linear cost growth, O(k), with the number of 
instructions held in the execution window. Therefore, it is 
scalable. Further, its execution algorithm is simple. 

 

• LSTT (Last-Snarfed Time Tag) key for opnd. linking

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus 
(spanning bus) 

(Snoop: look at bus
Snarf: read off of bus)

 

Time-Tag Example:

• R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

 

Time – 1:      I 1 brdcsts. R4 address matches, 
TT(I 1) >= LSTT(I 9),
I 1 info snarfed: R3=1

Time – 2:                               I 5 brdcsts.    R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Case 1:

 

Time – 1:                               I 5 brdcsts.    R4 address matches, 
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Time – 2:      I 1 brdcsts.                             R4 address matches,
TT(I 1) <

not
LSTT(I 9),

I 1 info snarfed.

Case 2:

 
Figure 3  Active Station logic and Time Tag example. In the example, in 
Case 1, I1 executes before I5, while in Case 2, I1 executes after I5. In both 
cases I9 ends up with the correct datum, ‘2.’ 

 
With memory operands, the memory address is used in 

place of the register address.  
Time tags are used in common processors to squash 

instruction results occurring after a mispredicted branch, as 
well as to maintain instruction order in general. A 
timestamping method was originally proposed for 
microarchitectures in the Warp Engine [7], which in turn 
was based on a novel simulation technique [13]. In the 
latter, a strict ordering of timestamps is maintained at 
receiving processes (in our case, instructions); Levo does 
not require this.  The Warp Engine relied on the use of 
either floating point numbers or very large integers for the 
time tags, only tagged memory references, required the use 
of bandwidth-consuming “anti-messages” for mis-
speculation rollback, and used the tags only for control-
flow ordering. 
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3) Segmented Result Buses  Scalable Microarchitecture 
In Levo, segmented or spanning buses are used to 

propagate active station results to later active stations. This 
avoids a performance penalty because an instruction’s 
result is likely to be used soon after it has been created [2, 
10, 18, 26]. Adjacent segments are connected via Register 
Forwarding Units (RFU), which introduce a small delay, 
usually one cycle, from segment to segment; see Figure 2. 
The idea is that the later in the E-window a result is used, 
the more likely it is to be used later in time, and the delays 
introduced by the RFU’s will be hidden. Segment length is 
independent of column height. Since the length of segments 
need not change with the size of the machine, the spanning 
buses help make Levo scalable. 

RFU’s hold versions of the ISA register state. Time tags 
are forwarded along with their corresponding register 
values by the RFU’s onto later bus segments. RFU’s also 
provide a filtering function: multiple writes to the same ISA 
register in an RFU are combined, keeping the later time tag 
and value, and only one result value for that register is 
forwarded.  

There is one RFU per sharing group and nominally one 
spanning bus per RFU. There are also Memory Forwarding 
Units (MFU), Predicate Forwarding Units (PFU), and 
spanning buses (not shown) for each of the corresponding 
data. The number of ports to/from RFUs, MFUs and PFUs 
are small and are constant with respect to the size of the 
machine; this also helps ensure scalability. 

Other novel features are: the elimination of a centralized 
register file, and the simplification of state commitment, 
both by using RFUs. To see this, assume in Figure 2 that 
column i-1 is column 0, where instructions are committed. 
By the time an RFU’s state reaches column 0, it contains 
the equivalent of what would normally be thought of as the 
ISA register state. Since the register values have already 
been broadcast to RFU’s in later columns, and since a new 
column’s (m-1) RFU’s are initialized with the contents of 
the prior column’s RFU’s, there is always at least one RFU 
in the E-window that holds the equivalent of the ISA state, 
no matter the time difference between writing and reading 
an architectural register; therefore it is unnecessary to save 
the ISA register state in a separate register file. The same is 
true of the predicate state. The memory values, however, 
must be written to the L1 D-cache, since an MFU cannot 
hold all possible memory locations. 

Sometimes instructions must request operands from 
earlier in the E-window. This is done via backwarding 
buses (not shown), following the same paths as the 
forwarding buses, just going in the opposite direction. An 
example of this is a Load instruction that has computed its 
memory address and is ready for execution, but has not yet 
snarfed a corresponding memory datum. The Load sends its 
request backwards in the E-window, along a backwarding 
bus; the request contains the memory address of the 
requested datum. A Store with a matching address will 
snarf and stop the backwarding request, and broadcast its 

Store value on a forwarding bus, in the usual way. The 
Load will then snarf the datum. Should there be no 
matching Store, the request is satisfied from the memory 
hierarchy; the latter is accessed simultaneously with the E-
window search, just in case there is no matching store 
earlier in the E-window. 

C. Initial Levo Experimental Results 
We have performed extensive cycle-accurate simulations 

on the Levo model [18, 19, 31, 35]. Briefly, 10 benchmarks 
from the SPECint95 and SPECint2000 suites were 
compiled into MIPS-1 code and executed on the simulator. 
These benchmarks are general purpose and typically have 
complex control flow, e.g., gcc; they are notoriously hard to 
execute well. While the IPC realized for a reasonable 
configuration and a main memory latency of 100 cycles is 
only about 5 IPC, we have discovered that if instruction 
fetch is improved the harmonic mean IPC goes up to 7-to-
17, depending on the configuration. We are currently both 
addressing this issue as well as implementing other IPC 
enhancing techniques. 

We have also found that main memory latency is 
tolerated well. Increasing the latency from 25 to 800 cycles 
reduces the performance by only 6%. 

Thus, the resource flow model works well on really 
tough code. Usually the SPECfp codes execute much better 
on high-IPC machines than the SPECint’s do. Since the 
SPECfp codes are much more similar (if not the same) as 
those executed on supercomputers, the implication is that a 
supercomputer using the resource flow model might 
execute its applications extremely well and with little if any 
additional programming effort. 

D. Why Levo is Relevant to Supercomputing 
The key problem with current supercomputing is the 

detection and minimization of data dependencies. Levo 
handles data dependencies routinely with scalable hardware 
and little effort. Resource-flow execution takes advantage 
of rampant speculation, which can be used as a tool to 
effectively schedule and map computation on 
supercomputers automatically, with no programmer 
involvement. Time tags make all of this possible. It is very 
easy to add resources with the Levo model; this is also true 
in our proposed supercomputer. Programming is made 
simple, once again. 

IV. TERADACTYL – RESOURCE-FLOW SUPERCOMPUTER 

A. Architecture and Overall Operation 
A block diagram of the overall Teradactyl logical 

architecture is shown in Figure 4, for a 16-processor 
implementation. It is intended that Teradactyl scale to 100’s 
of 1,000’s of processors. The simple logical “wagon-
wheel” structure shown is realized in physical hardware 
with a more linear and scalable construction; more on this 
in Section 4). 
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Figure 4.  Teradactyl block diagram (logical). Paths to or from Γ1(Gamma1) memory and PMU’s are called “gamma rays.” Gamma rays for ‘committed store 
data’ and ‘instructions’ are shown only for the earliest PMU (#0); such physical connections are also needed for the other PMU’s, but only those for PMU #0 are 
active at any given time. Gamma rays for ‘load datum return’ and ‘load request’ are active for all PMU’s all the time. All gamma ray bandwidth requirements are 
small. 

 
Roughly speaking, a complete Teradactyl corresponds to 

a complete Levo machine. In particular, a Teradactyl PMU 
(Processor/Memory Unit) corresponds to a Levo column. 
Internally, a PMU is similar in construction to a Levo 
machine. Hence, Teradactyl is essentially a macro-Levo 
constructed of smaller micro-Levo’s. 
1) Basic Structural Description 

The central part of Teradactyl is the Γ (gamma) 1 
memory, so called because it is above the main memory 
(Γ0) in the memory hierarchy (gamma=upside-down ‘L’; a 
regular ‘L’ is used below the main memory). Γ1 holds not 
only the coherent data memory of the entire computer, be it 
semiconductor, disk, tape or a combination of them, but 
also the program or instruction memory, and the overall 
control unit of Teradactyl.  

All of the application’s execution occurs in the ring of 
Processor/Memory Units (PMU’s) around Γ1. Each PMU 
executes a large part of the overall computation, much more 
than is held in each PMU’s (~Levo) E-window. The PMU’s 
and the Γ1 memory communicate via “gamma rays,” or 
spokes of the wheel. The load-request and return gamma 
rays to and from every PMU are relatively low-bandwidth 
connections. 

In the desired plan, there will be physical gamma rays for 
instructions and committed store data for all of the PMU’s, 
but only one PMU’s such gamma rays will be active at any 
given time, and usually for a relatively long time (micro- or 
milli-seconds). Thus, the actual bandwidth required at any 

given time to and from Γ1 should be relatively small. 
Teradactyl’s size is easily increased by inserting more 

PMU’s in the loop. 
2) General Operation 

Initially, none of the PMU's contain any data or 
instructions or are doing any computation. To start the 
execution of an application, G1 sends instructions (the 
application machine code itself, a standard non-parallelized 
imperative program) to an arbitrary PMU, which is then 
labeled with time tag (TT) #0. Thus, the ring of PMU's 
corresponds to Levo's E-window, and an individual PMU 
corresponds to an E-window column. The overall time tag 
of an instruction is thus its PMU number concatenated with 
its E-window time tag. 

PMU #0 allocates for itself an estimated useful amount 
of work (a ‘chunk’), then passes on future computation 
(instructions) to the next PMU (#1), PMU #1 gets its 
estimated share and passes the buck to PMU #2, and so on 
counter-clockwise around Γ1; see Figure 4. PMU’s 
continue to be added to the computation until PMU #0 is 
reached from the other side; the hardware is then fully 
allocated. 

All of the PMU’s execute their own share of the 
computation simultaneously. Resource-Flow rampant 
speculative execution is used. Thus, for example, PMU #4 
could be computing at the same time as PMU #1, even 
though by the nominal sequential order PMU #1’s 
computation should all be performed first. 
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What makes sure we get the right answer? Similarly to 
Levo, stores are effectively forwarded from PMU to later 
PMU and so on counterclockwise around the ring. The 
forwarding is adjusted so that the net bandwidth is linearly 
proportional to the number of PMU’s. Any PMU receiving 
a store with an address matching a valid datum in its Γ0 
memory may have to redo part or all of its computation, 
since an input may have changed. Since most scientific 
computation is data independent, we believe this will be a 
rare circumstance, and instead Teradactyl will realize close 
to the full parallelism inherent in the application. 

As a simple example, consider the addition of two 
matrices of vast sizes. The code goes to PMU #0, it takes, 
say, a million or a billion elements for itself, then PMU #1 
takes the next million elements, and so on. As soon as a 
PMU has its code loaded, it begins execution. It will start to 
generate load requests, which are sent back to Γ1 via the 
backwarding ring going clockwise in Teradactyl or via the 
PMU’s own gamma rays. As Γ1 receives the data requests, 
it satisfies them by sending the data out to the ring, and 
hence the requesting PMU.  

For a more complex example, consider another matrix 
operation that occurs after the matrix addition of the last 
paragraph. Assume the original matrices used as the inputs 
to the addition are sparse (their elements are mainly equal 
to 0). 

In the Teradactyl model, the second matrix operation will 
commence independently of the first operation, possibly 
even before it, even the second operation’s code is later in 
the Teradactyl ring; this is due to the rampant speculation 
of the Teradactyl model. The second operation will use 
whatever it predicts are the values of the results of the first 
operation; since the first operation’s output matrix is sparse, 
most of the time the second operation will use the correct 
values for its inputs, that is, it will have correctly predicted 
the values of its inputs. 

Now, let’s say the first operation produces an element of 
its result matrix that is non-0. Like the other results, this 
value is forwarded around the Teradactyl ring with its 
address. If a sub-operation in the second matrix operation 
has a matching address, and its predicted input value differs 
from the broadcast actual value (unlike in the previous 0 
broadcasts), the sub-operation will recompute its result, 
which in turn will be broadcast around the ring, updating 
later speculative computations as needed, and so on. 

Therefore, matrix operations are executed in parallel, 
with data dependent operations eventually sequentialized as 
necessary, and only when necessary.  

The communication around the ring will be very fast 
(nanoseconds from PMU to adjacent PMU), especially as 
compared to the execution time of each chunk in a PMU. In 
essence the entire computation is pipelined around the ring. 

When PMU #0 finishes executing its chunk, it sends its 
computed data to Γ1 for permanent storage. PMU #0 is 
then freed, and may be reallocated to the other end of the 
ring. Also, all of the remaining allocated PMU’s must 

decrement their PMU time tag values, in order to recycle 
them. 

Therefore the ring holds a rotating window of 
computation, advancing counter-clockwise as the 
computation progresses. 
3) Related Work 

Clearly the big picture of Teradactyl bears resemblance 
to architectures past. The Denelcor HEP [23] had a rotating 
window of threads’ state, each thread being executed a part 
at a time (until it blocked, say on a memory reference). 
However, there was effectively only one processor, so 
while efficiency was high, realized performance was less 
so. 

Perhaps the closest machine to Teradactyl is the systolic 
array class of machines, originally formulated by Kung and 
Leiserson [16]. There are a number of differences between 
the two machines. First, in Teradactyl output data (results) 
do not flow through the array to their final destination 
(memory), rather the results stay with the processor where 
they were computed, and are saved directly from there. 
Secondly, and perhaps most importantly, systolic arrays 
were heavily tied to the scheduling and mapping 
capabilities of their compiler, exactly what we are trying to 
avoid. Thirdly, the overall structure of a systolic array 
could be one dimensional, two dimensional, or something 
else, but always trying to match the targeted computations. 
Teradactyl targets all scientific large-scale computations, 
regardless of problem, program or data structure, and 
without the compiler’s assistance. 

There is also a resemblance to counterflow processors 
[27], but the latter were asynchronous machines aimed at 
the microprocessor/single-chip level, with instructions 
going in one direction and interacting with data going in the 
opposite direction. Teradactyl is dissimilar on all accounts. 

The Decoupled Access/Execute computer [24] is another 
type of machine separating flows of data or instructions. It 
was also targeted for uniprocessor construction, nor did it 
make use of time-tagging, to our knowledge. 
4) Physical Realities and Possible Solutions 

As shown in Figure 4, a logical Teradactyl does not 
scale: the total volume is proportional to the radius squared. 
However, there are numerous possible physical solutions, 
especially given the linear/ring nature of the machine.  

First, it is possible that many PMU’s would fit on a 
single chip, or at least many CPU’s. This would 
immediately but not dramatically increase the density of the 
machine. 

More likely would be a folding of the ring, again around 
a common core, like a cylindrical accordion. The ring could 
also be “wound” around the common core on a cylinder, 
spiraling up the outside of the cylinder then connecting to 
the inner PMU’s, spiraling down the inside of the cylinder 
and then reconnecting to the first PMU at the bottom. There 
are many physical topologies that would support the scaling 
of Teradactyl. 

The reliability and fault-tolerance of 1,000 processor 
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machines must always be considered. Teradactyl makes 
fault-recovery relatively easily. When a PMU fails, it is 
taken out of the wheel, and the resulting free ends of the 
wheel are logically connected together. In the worst case, 
all computation after the faulty PMU is squashed, and is 
repeated with the working PMU right after the faulty PMU 
taking the faulty PMU’s place and re-executing its code. 
The programmer is in no way involved in this process. 
Even the system operator need do little, other than record 
the location of the faulty PMU for later replacement. 

Teradactyl’s memory system architecture must still be 
honed to meet the needs of its likely applications. Also, the 
code chunking algorithm must be tuned and fleshed out. 
We are currently working on these issues. 

B. Processor/Memory Unit (PMU) Microarchitecture 
While it would be economically desirable to use a 

commodity processor such as an Intel or an AMD chip for 
the PMU, Teradactyl’s performance would likely suffer. 
This is because there is no externally-accessible indication 
of an instruction’s sink’s time tag, or the equivalent. Thus, 
a datum or other mispeculation would necessitate the 
squashing of all later instructions in all later PMU’s in the 
ring. This is unacceptable. Therefore we will use a Levo-
based microarchitecture for the PMU. 

A complete PMU in Teradactyl is analogous to an E-
window column in Levo. The PMU’s microarchitecture is 
similar to Levo’s; limited space precludes its precise 
description here. 

We are currently developing a Levo prototype. We have 
already obtained some of its physical hardware 
components. Our experience with this prototype will help 
us with the detailed architecture of a PMU. In fact, we may 
be able to realize one or more PMU’s with the Levo 
prototype, since the prototype will be constructed out of 
programmable logic. Therefore, we may be able to realize a 
very small version of a Teradactyl in hardware and test its 
operation. 

We hope to have the Levo prototype constructed and 
tested by early 2005. We do not yet know if a chip 
realization will be attempted. A lot depends on how 
successful the prototype is, and if it is picked up by 
industry. 

V. TERADACTYL ANALYSIS – ACHIEVING PETA-OPS 
We are interested in two estimates: how many processors 

are needed to execute both a sustained Tera-op, as well as a  
sustained Peta-op? (Note: we are not interested in peak 
performance, but rather the sustained performance which is 
exhibited during actual code execution.) Further, can these 
machines be built? 

We will take a Levo PMU as a starting point, using 
existing simulation results and hardware estimates [14, 35]. 
We assume Levo will operate at 5 GHz, a conservative 
estimate for a high-end processor a few years from now. 
We further assume that Levo will realize 10 IPC on average 

on scientific codes, a reasonable if not conservative 
estimate. (This may actually be achievable today. We have 
not simulated the SPECfp codes, which should do better 
than the SPECint codes; the latter give IPC’s of about 6, 
today.) Note that this all includes high-latency memory 
accesses and other realistic assumptions. 

Therefore each PMU will yield a sustained 50 Giga-ops 
of performance. 20 PMU’s arranged in a Teradactyl wheel 
will thus give a sustained Tera-op. Let us assume that not 
all PMU’s will be efficiently utilized, and call it 25 PMU’s 
for a Tera-op. Then a Peta-op will take 25,000 PMU’s, and 
dissipate around 1-2 Megawatts. The latter is exhibited by 
today’s supercomputers, and it may decrease as a result of 
all of the low-power processor research underway today. 
We call this size of Teradactyl a Petadactyl. 

By way of further comparison, the fastest supercomputer 
today, the Japanese Earth Simulator, has a peak 
performance of about 35 Tera-ops. Much of this is realized 
in sustained program execution of at least some programs. 
Other supercomputers have peak performances in the 5-7 
Tera-ops range, and have difficulty realizing a Tera-op in 
sustained performance on many codes. 

While Petadactyl’s 25,000 processors look daunting, 
remember that the Teradactyl programming model is 
extremely simple; no programmer-based parallelization or 
resource allocation is performed. No communications 
strategies need be devised. Further, greater advances in IPC 
realization are likely before such a machine is built, and 
processor clock-rates may be greater [33], leading to a 
reduction in the total number of PMU’s needed. 

VI. CONCLUSIONS 
Teradactyl is a new supercomputer architecture that 

greatly reduces the time needed for programmers to make 
use of high-end computers. In particular, non-computer 
specialists will find it easy to program Teradactyl and 
obtain solid performance, without the machinations 
currently required of such researchers. 

Teradactyl is scalable by design, can easily reach Tera-
ops speeds. Peta-ops performance is readily obtained when 
the requisite larger number of processors is used, giving a: 
“Petadactyl.” Such a change will require little or no porting 
of program code by the end users. If anything, the codes 
will be simplified, as compared with the code versions used 
on traditional supercomputers. 

Clearly, there is much to be done before we can make a 
strong experimental case for Teradactyl. The current Levo 
simulator, FastLevo, must be adapted for the particular 
microarchitecture needed for Teradactyl PMU’s, and a 
Teradactyl simulator must be written to verify its high 
performance. 

In terms of prototypes, the goal is to first build a Levo 
processor (its design is underway), then a 25 processor 
Teradactyl, then a 25,000 processor Petadactyl.  

While the challenges in realizing our goals are great, we 
are confident of success. In order to solve hard problems, 
especially old ones like automatic extraction of parallelism, 



SSCCII 2004 Conference. ARC (Computer Architecture) paper. 
 

9

one must start from a completely different perspective, and 
be willing to rethink all of the assumptions that have 
hampered success. We are doing this. 
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